
The "Server-Sent Events
Documentation Repository"

Release 0.1

Hector Miranda

Jul 04, 2023

CONTENTS

1 Contents 3
1.1 Table of Contents . 3
1.2 Introduction to Server-Sent Events . 3
1.3 Receiving events from the server . 3
1.4 Creating an EventSource instance . 4
1.5 Listening for message events . 4
1.6 Listening for custom events . 4
1.7 Sending events from the server . 4
1.8 Error handling . 4
1.9 Closing event streams . 5
1.10 Event stream format . 5
1.11 Table of Contents . 5
1.12 Introduction to Server-Sent Events . 6
1.13 Receiving events from the server . 6
1.14 Creating an EventSource instance . 6
1.15 Listening for message events . 6
1.16 Listening for custom events . 6
1.17 Sending events from the server . 7
1.18 Error handling . 7
1.19 Closing event streams . 7
1.20 Event stream format . 7

i

ii

The "Server-Sent Events Documentation Repository" , Release 0.1

```mermaid graph LR A[Client] –> B((EventSource)) B – Subscribe –> C[Server] C – Send events –> B B – Event
handling –> A

CONTENTS 1



The "Server-Sent Events Documentation Repository" , Release 0.1

2 CONTENTS



CHAPTER

ONE

CONTENTS

1.1 Table of Contents

1. Introduction to Server-Sent Events

2. Receiving events from the server

3. Creating an EventSource instance

4. Listening for message events

5. Listening for custom events

6. Sending events from the server

7. Error handling

8. Closing event streams

9. Event stream format

1.2 Introduction to Server-Sent Events

1.2.1 Server-Sent Events (SSE)

Server-Sent Events (SSE) is a standard that allows a web page to receive updates from a server over a single, long-lived
HTTP connection. It provides a simple and efficient way to push data from the server to the client in real-time.

1.3 Receiving events from the server

To receive events from the server using SSE, the client needs to establish a connection and listen for incoming events.
This can be done by creating an EventSource instance.

3



The "Server-Sent Events Documentation Repository" , Release 0.1

1.4 Creating an EventSource instance

To create an EventSource instance in JavaScript, you can use the following code:

const eventSource = new EventSource('/events');

In the above code, /events represents the URL from which the server sends events. You can replace it with the appro-
priate server endpoint.

1.5 Listening for message events

The message event is fired when the server sends a new event. To listen for message events, you can use the following
code:

eventSource.addEventListener('message', function(event) {
const data = event.data;
// Handle the received event data

})

1.6 Listening for custom events

Apart from the standard message event, the server can also send custom events. To listen for custom events, you can
use the following code:

eventSource.addEventListener('myevent', function(event) {
const data = event.data;
// Handle the received custom event data

})

In the above code, myevent represents the name of the custom event sent by the server.

1.7 Sending events from the server

The server can send events to connected clients using the SSE protocol. The events are typically sent in a specific
format, which includes the event type, data, and optional fields like retry interval.

1.8 Error handling

In case of errors or connection issues, the server can send an error event to the client. The client can handle these errors
by listening for the error event.

eventSource.addEventListener('error', function(event) {
const error = event.error;
// Handle the error

})

4 Chapter 1. Contents



The "Server-Sent Events Documentation Repository" , Release 0.1

1.9 Closing event streams

To close the connection and stop receiving events, the client can call the close() method on the EventSource instance.

eventSource.close();

1.10 Event stream format

The event stream format used by Server-Sent Events is a text-based format with a specific structure. It consists of lines
of text, where each line can represent an event field such as event type, data, or retry interval.

Here’s an example of a basic event stream:

event: message
data: Hello, world!

event: customEvent
data: Some custom data

The above example demonstrates two events: a standard message event and a custom customEvent with their respective
data.

These are the main concepts of using Server-Sent Events. By following these guidelines, you can easily implement
real-time updates in your web applications.

1.11 Table of Contents

1. Introduction to Server-Sent Events

2. Receiving events from the server

3. Creating an EventSource instance

4. Listening for message events

5. Listening for custom events

6. Sending events from the server

7. Error handling

8. Closing event streams

9. Event stream format

1.9. Closing event streams 5



The "Server-Sent Events Documentation Repository" , Release 0.1

1.12 Introduction to Server-Sent Events

1.12.1 Server-Sent Events (SSE)

Server-Sent Events (SSE) is a standard that allows a web page to receive updates from a server over a single, long-lived
HTTP connection. It provides a simple and efficient way to push data from the server to the client in real-time.

1.13 Receiving events from the server

To receive events from the server using SSE, the client needs to establish a connection and listen for incoming events.
This can be done by creating an EventSource instance.

1.14 Creating an EventSource instance

To create an EventSource instance in JavaScript, you can use the following code:

const eventSource = new EventSource('/events');

In the above code, /events represents the URL from which the server sends events. You can replace it with the appro-
priate server endpoint.

1.15 Listening for message events

The message event is fired when the server sends a new event. To listen for message events, you can use the following
code:

eventSource.addEventListener('message', function(event) {
const data = event.data;
// Handle the received event data

})

1.16 Listening for custom events

Apart from the standard message event, the server can also send custom events. To listen for custom events, you can
use the following code:

eventSource.addEventListener('myevent', function(event) {
const data = event.data;
// Handle the received custom event data

})

In the above code, myevent represents the name of the custom event sent by the server.

6 Chapter 1. Contents



The "Server-Sent Events Documentation Repository" , Release 0.1

1.17 Sending events from the server

The server can send events to connected clients using the SSE protocol. The events are typically sent in a specific
format, which includes the event type, data, and optional fields like retry interval.

1.18 Error handling

In case of errors or connection issues, the server can send an error event to the client. The client can handle these errors
by listening for the error event.

eventSource.addEventListener('error', function(event) {
const error = event.error;
// Handle the error

})

1.19 Closing event streams

To close the connection and stop receiving events, the client can call the close() method on the EventSource instance.

eventSource.close();

1.20 Event stream format

The event stream format used by Server-Sent Events is a text-based format with a specific structure. It consists of lines
of text, where each line can represent an event field such as event type, data, or retry interval.

Here’s an example of a basic event stream:

event: message
data: Hello, world!

event: customEvent
data: Some custom data

The above example demonstrates two events: a standard message event and a custom customEvent with their respective
data.

These are the main concepts of using Server-Sent Events. By following these guidelines, you can easily implement
real-time updates in your web applications.

1.17. Sending events from the server 7


	Contents
	Table of Contents
	Introduction to Server-Sent Events
	Server-Sent Events (SSE)

	Receiving events from the server
	Creating an EventSource instance
	Listening for message events
	Listening for custom events
	Sending events from the server
	Error handling
	Closing event streams
	Event stream format
	Table of Contents
	Introduction to Server-Sent Events
	Server-Sent Events (SSE)

	Receiving events from the server
	Creating an EventSource instance
	Listening for message events
	Listening for custom events
	Sending events from the server
	Error handling
	Closing event streams
	Event stream format


